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We describe a one-stage replica-symmetry-breaking (RSB) calculation of the free energy of the
annealed-dilution network with binary couplings. We locate the extremum of the free-energy functional
through a systematic search in the space of order parameters. A genuine RSB extremum only exists for
values of the storage ratio a greater than a;, which is the value for which the RS entropy vanishes at
T =0. The corresponding free energy always has a positive value from which we derive that the storage
capacity is equal to a,. The free energy also determines the fraction of errors when the loading of the
network exceeds the storage capacity. Although the error fraction for weak overloading is remarkably
small, the information content in the optimal coupling vector fails to grow above its value at saturation.

PACS number(s): 87.10.+e, 64.60.Cn

I. INTRODUCTION

The replica method [1] has evolved over the past ten
years into one of the basic tools for the statistical study of
neural networks. The method has been highly successful
in networks with continuous connection strengths [2—-4],
where the assumption of replica symmetry (RS) can often
be justified. This assumption renders the calculations
straightforward and fairly simple. In the case of net-
works with discrete connection strengths, however, it has
turned out to be necessary to proceed to replica symme-
try breaking (RSB), which leads to calculations that are
considerably more elaborate and laborious.

An important contribution to this development has
been Krauth and Mézards’ one-stage RSB calculation of
the storage capacity for the network with binary cou-
plings [5]. These authors found, for values of the storage
ratio a larger than 0.83, that a transition temperature ex-
ists below which the system freezes into its ground state
with a fraction of the presented patterns not memorized.
for values of a smaller than 0.83, however, RS holds good
and all patterns are safely stored. Krauth and Mézard
additionally found that the critical storage value
a,=0.83 could also, yet much more easily, be deter-
mined by solving the RS saddle-point equations with the
added condition that the RS entropy vanishes at 7'=0.
This interesting finding has prompted several authors to
add the zero-entropy (ZE) condition also in RS calcula-
tions for other networks with discrete couplings, presum-
ing that the equivalence observed by Krauth and Mézard
might also hold in these other cases. This has been done
by Bouten, Komoda, and Serneels [6] for the annealed-
dilution network with binary couplings and by Gutfreund
and Stein [7] for multiple-valued couplings. Similar and
very extensive calculations have recently been carried out
by Bollé and Van Mourik [8] for networks with multi-
state neurons. It has to be kept in mind, though, that no
general argument exists that could justify the RSB-ZE
equivalence assumed in the above calculations. In study-
ing a network that interpolates between the Hopfield and
the pseudoinverse models, Dotsenko and Tirozzi [9]
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found that the equivalence does not hold. In her study of
the generalized Sherrington-Kirkpatrick spin glass with
p-spin interactions, Gardner [10] found that, for all p > 2,
the transition to RSB occurs at a temperature where the
entropy is positive. Only in the limit p — o, where the
model becomes equivalent to the random energy model
[11,12], does the transition to RSB coincide with the van-
ishing of the RS entropy.

In this paper, we describe a one-stage RSB calculation
for the annealed-dilution model with binary couplings [6].
The primary aim of this calculation is to investigate the
validity of the ZE condition as a criterion for the deter-
mination of the storage capacity. A further point of con-
siderable interest is the calculation of the minimum frac-
tion of errors the network makes when the storage level
surpasses the saturation limit. This quantity has so far
been determined only for networks with continuous con-
nection strengths [13,14].

II. REPLICA CALCULATION

The network we consider is a perceptron with N input
and 1 output neurons. Each neuron is a two-state unit
described by an Ising variable. The network will function
as a memory device for storage of p =aN random pat-
terns or input-output pairs {&*,§*} (u=1,...,p), pro-
vided N coupling coefficients J; can be found such that

N
S JE | (w=1,...,p). (1)

j=1

é‘.u' =sgn

The annealed-dilution network with binary couplings is
specified by the two constraints [6]

J;=0,%1, )
N
S J}=/N. (3)
ji=1

The parameter f € [0,1] determines the degree of dilu-
tion. For f =1, the model reduces to the fully connected
network studied by Krauth and Mézard [5]. The storage
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capacity a,(f) is defined in the thermodynamic limit
N — 0, p— o as the largest value of a=p /N for which
coupling coefficients J; can be found that fulfill all condi-
tions [(1)-(3)].

Following the approach of Gardner-Derrida [15], an
energy function is defined on the space of coupling vec-
tors J which counts the number of stability conditions (1)
that are violated. A general expression can then be writ-
ten down for the associated free energy
F(T)=—(T/N){InZ(T)) by making use of the replica
method [1].

rs=1f@@—fF+ [ “DzIn[1+ef 12 cosh(V72)]

e o dk
af_w Z 1n f—eo\/ZqT(l—-q)exp

with the usual shorthand notation Dz for the Gaussian
measure. The stability parameter K (in all actual calcula-
tions, we will choose K =0), the order parameter g, and
its conjugate § are as in [5,6], while f is introduced to ex-
press the dilution constraint (3). It is easy to write down
the three saddle-point equations for the extremum of Ggg
and to solve them numerically for different values of the
external parameters @, 7, and f. The resulting free ener-
gy Fgs(T) exhibits, for all values of f, a qualitative
change in its dependence on T when a grows. For small
a, the function Fgrg(T), starting from zero to T=0, de-
creases monotonically with increasing 7. This ‘“normal”

——1]:6[K—k]—

A. Replica symmetry

To proceed with the actual calculation, one has to
make an assumption about the general structure of the
order parameter matrix. Using the simplest ansatz of re-
plica symmetry, the free energy is obtained as

Frs(T)=—T extrGgs(,9,f;a, T, f) , 4)
{qaf}

where

(A—V/gqz)?
2(1—q)

I

f

when a > a,(f) entails a negative value for the entropy at
temperatures below the critical temperature T,, a clear
signal that the RS result for the free energy cannot be
correct. The transition value a,(f) can be characterized
by the property that the RS entropy vanishes at 7=0.

B. One-stage replica symmetry breaking

Assuming that the RS Ansatz is to blame for the nega-
tive entropy, we move on to calculate {InZ (7)) in the
first stage of RSB. This yields

(1
behavior, however, is lost beyond a certain value a,(f). Frsp(T)
For such a>a,(f), the free energy Frg(T) still starts =—T extr GR&(q0,91,m80,81,F30T,f),
from zero at T=0 but now rises to a maximum at (4091m202,f}
T=T,.(a,f) before declining at higher values of 7. Fig- 6)
ure 1 illustrates this change in behavior of Fgg(T) for the
case f=0.6 for which a,(f)=1.17 The deviant behavior where
|
=%f<1—m)q@1+%fmqoﬁo—ff
+#f+tzolnf+tzl[l+e - 2cosh(\/@ozo+\/@1 goz)]1"
Voo~ Vari—aon ||
a p+o +w + o dA 1 (A=V'qozo—V'q;— qozl
“+ — Dz,In Dz ——— ) 4 —“—Q[K—}\,]— . (7)
mf—oo 0 fﬁw ! f—w V2r(1—q,) P T 2(1—gq,)

The extremum now yields six complicated saddle-point
equations, and finding a solution different from the RS
solution turns out to be a daunting numerical task. We
have concentrated on this problem for quite some time,
but, in spite of considerable effort, we have failed to find a
new solution that satisfies all saddle-point equations.
Since some of these equations become ill-defined when
g,—1, it is conceivable that the numerical search could
miss a solution with ¢, close to 1. However, when we

f

take the asymptotic form of the saddle-point equations
for g, —1, we discover that these equations are incompa-
tible, so that no solution can exist. This result stands out
in contrast to the finding of Krauth-Mézard [5], who
wrote that a solution to all equations had been found in a
region where g, — 1 at finite T

To clear up this contradiction, we have carried out a
systematic and controlled search for the overall ex-
tremum of G{Jp. Here we mention only the result and
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FIG. 1. RS free energy Fgs(T) for f=0.6 for a=1.0 (lower
curve), a=1.17 (middle curve), and a=1.4 (upper curve).

refer to the Appendix for a description of our method.
For values of a>a,(f) and T <T_.(a, f), a genuine RSB
extremum, different from the RS solution, exists and it is
located in the hyperplane g, =1. This RSB extremum,
however, cannot be obtained by searching for solutions of
the full set of saddle-point equations because the deriva-

(1)
Grss —’1
"~

alﬁoo

+ + o0 dA
+a Dz,ln —F———€Xp
f—w 0 f-w V2r(1—q,)

Comparison with (5) shows that this asymptotic form is
related to Ggg in a simple way,

(10)

1 1 .. T
G(RS)B - Grs |90:m L‘?o,?,a, —,f
ql—>l m m

il | ®
Using this simplified expression for G Reg in (6) we obtain

Fe(T)= extr
[‘lomao?}

RS

T
b ’?; 7—_’
do m%o a m f

(11)

The main difference with the expression (4) for Frg(T) is
the occurrence of the extra variable m in the extremum
operation. However, if we rewrite (11) as

m

Fp(T)=extr | extr
m lqo%?}

T

X GRS do M 7@01?;(1’ ;’f

I

(12)

1 + P—m?2
P Lfm*q.q0—fP+ f*oo DzyIn[1+e

m
— Ok —A)—

tive 3G Rdp /dg, at the extremum is different from zero.
For all other values of @ and 7, the only RSB extremum
is the RS solution. Due to the redundancy of the RSB or-
der parameters in this case, the RS solution exists over a
large interval of the parameter ¢q,, extending to the
boundary g;=1. We can therefore conclude that the
overall extremum of GRdy in the full parameter space
can, in all cases, be obtained by restricting the search for
this extremum to the hyperplane g, =1.

III. THE FREE ENERGY F {5 (T)

In order to determine the extremum (6) of GRdp in the
hyperplane g, =1, we first derive the asymptotic form of
Gy when g, —1. Since g, =1 is at the border of the
domain of gq,, its conjugate variable §,; must tend to
infinity. It is now important to notice that, as §;— 0,
there must be a concurrent growth of f in order to keep
the dilution degree intermediate between O and 1. More
explicitly, the combination

» m(l—m)

P=mf S (8)

has to retain a finite value. Once this is noted, it becomes
straightforward to calculate the limit of G {{g:

%72 cosh(mV/ qgzo)] }

(A= ¢z )?

[
comparison with (4) immediately shows that

FQlg(T)=extrFgg (13)
m

The extremum in this expression is a maximum and the
value of m must be confined to the interval [0,1]. Calling
T'=T/m, we can rewrite (13) in the more appealing
form

FggS’B(T)=rTr,1§;;FRS< T) . (14)

Our previous study of Frg(T) in Fig. 1 allows us now to
determine Flz(T) immediately for any value of a. For
a<ay(f), Fre(T) is a monotonically decreasing function
so that the maximum in (14) is obtained at the lower
bound T'=T. The same argument applies for a > a,(f)
when T>T,(a,f). In the remaining case, a > a,(f) and
T>T.a,f), the maximum is obtained at T'=T («, f).
Thus we finally obtain

Fps[T (a,f)] ifa>a,(f)and T<T (af)
(15)

() —
Fgrsp(T)= Frs(T) otherwise .
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IV. RESULTS AND DISCUSSION

It is now easy to determine the storage capacity of the
annealed-dilution network. This is characterized as the
storage level where the network loses its ability of storing
all input-output relations perfectly. This translates to the
energy function starting to take on a nonzero value. The
ground-state energy as a function of a follows from (15):

Fps(T (a,f)), a>a,(f)
Eola, f)= Frs(0), a<ay(f). (16)

From our previous study of Fgs(T), we know Fgg(0)=0
and Fgg(T (a.,f))>0. Hence we immediately conclude

a,(fH=a,(f) . 17

This vindicates the ZE assumption made in [6] to deter-
mine the storage capacity a.(f) of the annealed-dilution
network with binary couplings. Figure 2 shows the
storage capacity a.(f) and compares the theoretical
curve with results from numerical simulations for N =12
and 16 neurons. These results were obtained through a
full enumeration of all coupling vectors J that satisfy the
constraints (2) and (3). Like Krauth and Opper [16], we
have chosen ‘“Gaussian” random patterns in order to
avoid the strong odd-even effects that occur in systems of
a small size. Choosing a set of p =aN random input vec-
tors and a random binary output, we scan all possible
coupling vectors J to find out whether or not a vector ex-
ists that stores all the patterns. Repeating this process
for many samples determines the probability of success,
which then determines the storage capacity. The figure
shows remarkably good overall agreement between the
theoretical curve and the simulations. Nevertheless, one
should be very cautious in drawing conclusions from this
agreement, as it is well known that strong finite-size
effects [17] may invalidate the good agreement observed
in simulations with small N. A comparison of our results
for N=12 and W =16 gives us some hint of the impor-
tance of finite-size effects. Since, for given N, the value of

o (1)

FIG. 2. Storage capacity a.(f) as a function of the fraction
of nonzero couplings. The theoretical curve is compared to nu-
merical results, obtained from a full enumeration of coupling
vectors for a network with N=12 (+) and N=16 (O ) neurons.

f increases in jumps of 1/N, a good comparison is only
possible for such values of f that are multiples of -5 and
%> i.e., the multiples of . At these points, we find that
the results for N =16 move slightly closer to the theoreti-
cal curve than those for N=12. This gives us some
confidence that the theoretical curve may represent the
correct storage capacity. Simulations for considerably
larger values of N would be needed to confirm or invali-
date this confidence, but they are not feasible for a full
enumeration procedure.

Besides the storage capacity, knowledge of E(«,f)
also allows us to determine the minimal fraction of errors
in the output when the loading exceeds the storage capa-
city. For a>a,(f), the fraction of errors is given by

e(a,f)=%Eo(a,f)=;11\7FRs(Tc(a,f)) . (18)
Results from our numerical calculations of E(c, f) are
shown in Fig. 3(a) for three choices of the dilution param-
eter f=0.3, 0.6, and 1. The three curves display a very
similar behavior, starting from O at a.(f) and rising slow-
ly towards the asymptotic value 0.5 when a— . The
great similarity of the curves becomes even more ap-
parent when we rescale the a axis and plot e(a,f) as a
function of the “relative degree of overloading” a/a.(f)
[Fig. 3(b)]. The two curves for f=0.3 and 1 now become
indistinguishable on the scale of the figure, while the
f=0.6 curve comes slightly below, the deviation always
being smaller than 3%. For the sake of simplicity, we
will in the following discussion ignore these small devia-
tions and consider e(a, f) as a function of a/a ( f).

To appreciate the performance of the minimization of
errors procedure, it is useful to compare the calculated
value of e(a, f) to some standard. A reasonable choice is
the following coupling vector. Among the p =aN pat-
terns, we take at random any subset of a.(f)N patterns
and determine the coupling vector (denoted by J*) that
stores this subset exactly. Of the remaining [a—a.(f)]N
patterns, half will on average be classified correctly by J*,
while the other half will get the wrong output. The frac-
tion of errors for the network with coupling vector J* is
then

a(f)
a

e*(a,f)= 1— , aza(f). (19)

1
2

This function is also shown in Fig. 3(b) (dotted line). It
obviously is an upperbound for the minimal fraction of
errors e(a, f). A comparison of the curves indicates that
ela, f) lies well below e*(a, f) for not too large values of
a/a,. As an example, for a/a,=2, the minimal fraction
of errors is e=0.11, to be compared to e*=0.25. This
means that, when the network is overloaded with as
many extra patterns as it can properly store at saturation,
it is possible to reduce the 50% wrong outputs on the ex-
tra patterns made by the vector J* to a mere 22% by
selecting the optimal coupling vector. In the case of con-
tinuous couplings [13,14], the minimal fraction of errors
is even lower (as can be read off from the published
figures). Minimizing the fraction of errors thus appears
to be an efficient way to improve the storage performance
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(b)

0.1 r

FIG. 3. (a) Fraction of errors
r e(a,f) as a function of a for
L f=0.6 (lower curve), f=0.3
(middle curve), and f=1 (upper
curve). (b) The same curves as a
function of a/a.(f) for f=0.6
(lower solid curve) and for
f=0.3 or f=1 (upper solid
curve). The dotted curve

of an overloaded network.

As is well known [6], at the saturation limit «.(f) the
amount of information stored in the coupling vector re-
garding the classification of the a.(f)N input patterns is
markedly below the maximum amount that is possible to
store in a vector that satisfies the constraints (2) and (3).
The fraction of information storage that still remains

available at saturation varies with the dilution f, its larg-
]

represents the  upperbound
e*(a/a.).

est value exceeding 25% for f=2Z. When the network
gets overloaded and the optimal coupling vector is found
by minimizing the number of wrong outputs, one may ex-
pect that some additional information is collected in the
optimal vector and that the total information content will
continue to grow towards the maximum possible. At
loading level a > a,(f), the information contained in the

optimal vector is given by

I(a,f)=aN

In2

1+ e(a,fn[e(a,f)]+[1—ela,f)])In[l—e(a,f)]

, (20

where e(a, f) is the minimal fraction of errors (18) and I(«, f) is measured in bits. In particular, for a=a_(f) i.e., at
saturation, (20) yields I(a.(f),f)=a,(f)N. The same value clearly is also the information content of the vector J*
with the fraction of errors (19). It is important to note that the expression (20) is not applicable for the vector J* be-
cause in this case, the identity of a.(f)N patterns that are correctly classified is known. As we have found to a very
good approximation that e(a, f) is a function of a /a_.(f), it is expedient to rewrite (20) in the form

, {_a__ ]m —e [1
a, a,
1+

In2

+ In{l—e

a
aC

I(a,f)
I(a (f),f)

= (21)
aC

This shows that the relative change in the amount of
stored information depends only on the relative degree of
overloading a/a,. To a very good approximation,
I(a)/I(a,) will therefore be the same for all values of the
dilution f. Numerical evaluation of (21) for different
values of f yields the surprising result that I(a)/I(a,)
stays almost constant with a value very close to 1 over an
extended interval of a/a,=>1. This result is shown in
Fig. 4 for f=0.6. The linear rise for a/a, <1 is followed
by a tiny bump of height less than 1.004 at a/a,~1.2.
For larger values of a/a, the function slopes down very
slowly to its asymptotic value 0.995. A very similar
behavior has been obtained for other values of f, with the
maximum height never exceeding 1.008 and the asymp-
totic value always larger than 0.96. Contrary to expecta-
tion, the information content in the optimal coupling vec- 0 1 2 o B 4 5
tor never increases substantially above its value at satura-
tion, which is also the information stored in J*. Even
though the number of correctly stored patterns does in-
crease markedly, the corresponding gain of information is
compensated almost exactly by the loss of information

FIG. 4. Information stored in the optimal coupling vector as
a function of a/a, for f=0.6. The inset gives a magnified view
of the tiny bump at a/a,=1.2.
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due to the fact that one does no longer know the identity
of aN correctly classified patterns. This result resembles
the finding for biased patterns [2], where the substantial
increase in the number of stored patterns does not entail
an increase in the amount of stored information. One
could still hope that an increase in stored information
might be achieved by using a more suitable cost function
that maximizes the information storage. Nevertheless,
since the stored information per pattern is a function only
of e(a, f) [see (20)], minimizing the fraction of errors is
tantamount to maximizing the information storage.
[This conclusion has to be qualified to a certain degree
because the expression (20) for I(a,f) is only valid for
cost functions that treat the aN patterns in a symmetrical
way, which is the type of cost function that has common-
ly been considered up to now.] The prospects for increas-
ing the information storage in the coupling vector above
its value at saturation therefore look rather bleak.
Surprisingly, a way has recently been discovered to make
full use of all the available information storage of a
binary vector by replacing the signum operation in (1) by
a more complicated activation function [18].
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APPENDIX

To pin down the location of the overall extremum of
Gy in the six-dimensional parameter space, we will
proceed in two steps. In the first step, we determine the
extremum of GgJp within each hyperplane with a fixed
value for the parameter q;. This can be done by finding
the solution to the saddle-point equations for the five
remaining parameters. The value of the extremum ob-
tained in the hyperplane g, is denoted as

G(q1)= extr G(RIS)B(qO’qu’aO’qlrfA;a’ T.f) .

{qoqual

(A1)

In the second step, we make a plot of G(g,) in the inter-
val [0,1] and locate the extremum (i.e., minimum) value.

We have carried out the above procedure for many
different values of the three external parameters, a, f,
and 7. In all cases considered, it turns out that finding
the numerical solution of the five remaining saddle-point
equations for any fixed value of g, is a straightforward
task. Plotting the corresponding value of G(q,) exhibits
two different types of curves, depending on the values of
a and T. For small a or large T, the function G(q,) de-
creases smoothly with increasing ¢g; to a minimum
beyond which it stays constant at this minimum value.
An example of such curves is shown in Fig. 5(a). For
larger a and low T, however, while G(ql ) starts off in the
same way and shows a similar behavior over a large part
of the g, interval, the behavior close to the border g, =1
becomes very different. Here G(q,) begins to slope down
again and, very near g; =1, drops down steeply to its
minimum value. Figure 5(b) shows an example where
both types of curves are present for different values of T.
The value of G(g,) very close to g, =1 cannot be calcu-
lated numerically because the convergence of the in-
tegrals in the saddle-point equations deteriorates badly as
g, — 1. But here we can make use of the asymptotic form
of the equations, as has been done in Sec. III.

We now turn to Figs. 5(a) and 5(b) for a more detailed
discussion of our results. Both figures show TG(q;) in
the interval 0.4 =g, =<1 for the same dilution f=0.6 and
two different values of the temperature, 77=0.05 and
0.14. Figure 5(a), for a=1, is typical of small a behavior,
while Fig. 5(b) for a=1.4 is typical of large a behavior.
In the figures, we have added the extra factor T to G(q,)
so that the lowermost value of each curve directly indi-
cates the value of the free energy [except for a change in
sign; see (6)], which after all is the quantity we are in-
terested in. In Fig. 5(a) for a=1.0, the same type of
behavior of G(g,) is observed for all values of T (illus-
trated here for two values only). At low values of g, the
extremum (A1) yields g,=g¢,. The value of G(q,) de-
creases rapidly with increasing g; until the minimum is
reached at g, =0.62 for T=0.05 and at g, =0.56 for
T=0.14. These minima (indicated by an arrow)
represent the RS solution at these two temperatures. The
curves can be continued with the RS ansatz for larger
values of g, (dashed curves) by imposing the extra con-
straint g, =g, in (A1). In our search for the extremum of
G {dp however, we must allow g, full freedom to take on
its optimal value. We then find that G(q,) stays constant

FIG. 5. (a) Function TG(q,)
for f=0.6, a=1.0 for T=0.05
(lower curve), and 7T=0.14
(upper curve). (b) The function
TG(q,) for f=0.6, a=1.4 for
T=0.14 (lower curve), and

T=0.05 (upper curve).
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over the whole remaining interval (solid curves). The
constancy of G(q,) is easily understood by noting, for
q1> qmin, that the extremum (A1) systematically yields
m=1 and qy=¢;,. This clearly keeps the Parisi order
parameter function unaltered [19]. From Fig. 5(a) one
notices that the minimum value of TG (q,) is positive and
decreases with decreasing 7. This reflects the behavior of
the RS free energy in Fig. 1 in the case a <a,(f) [recall
a,(f)=1.17 for f=0.6].

In Fig. 5(b), for a=1.4, which is now larger than
a,(f), we observe a different behavior according to
whether T> T (a,f) or T<T.(a,f). For all T=0.14,
which is the value of T,(1.4,0.6), we observe the same
behavior as in Fig. 5(a), with the RS solution a minimum
value for TG(q,). Note that the value at the minimum

has become negative now in accordance with the positive
RS free energy in this case in Fig. 1. Going to the lower
temperature T =0.05 raises the RS minimum. More ex-
citing, however, is the different behavior for large values
of g,. Near g, =1, the constant plateau value of G(q,)
begins to slope down again and, very close to the border
g, =1, it plunges towards its minimum value at g, =1.
We have calculated G(g,) numerically up to ¢, =0.998
(solid curve). The dotted line is an extrapolation to the
minimum value of TG(q,) at g, =1, as is obtained in Sec.
III. The figure clearly demonstrates that the minimum of
G(q,) is located at ¢, =1. The slope at the minimum is
large and negative, which demonstrates that this
minimum cannot be obtained from solving the saddle-
point equations.
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